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• Bias and Fairness in NLP

• NLP for Second Language Learning

• My Current Research

• Other Projects

Overview
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Correference Resolution

• The doctor hired a nurse because he was 

busy (Correct)
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• Generated an image dataset with 

minimal changes

• Asked questions about social 
status
– No apparent differences? Yay!

• Then asked the models to write a 
story
– Ah, now we see the biases!

Biases in the Age of LLMs
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The Future Is Now

And It Is Biased
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• AI finds and exploits patterns in 

data

• Humans are biased and this is 

reflected in the data we produce

• Our models can and will pick up 

these patterns and perpetuate 

unwanted biases

Encoding Biases
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• The term bias is often ill-defined

• Study of “bias” is inherently normative

• We assume some behaviours of the systems 

are acceptable and others are not

• This is rooted on assumptions of how society or 

technology should be

What Do We Mean by “Biases”?
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• It should be explicitly stated what we mean by 

“biases”

• All of these should be grounded in literature 

outside of NLP

• Our methodology should both be informed by 

and match up with all of the above

Things to Keep in Mind

13|      SPRÅ KBA NKEN  TEXT



UN IVERSIT Y OF GOT HENB URG

• We want the goals of AI systems to match up 

with those of humans

• One big area of research is AI systems learning 

human values

• The question remains: whose goals and values 

are these systems aligning with?

A Similar Concept – Alignment
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• Measuring bias

– Intrinsic / bias metrics

– Extrinsic / fairness metrics

• Looking into datasets

– Representation

– Annotation guidelines

• Diagnostic datasets 

– Tricky examples

– Examples to get a reaction out of the model

Identifying Biases
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The MARB Dataset

• Reporting bias stems from people talking 

about things that are outside of the obvious

• This leads to marked and unmarked attributes
– That is, what is considered to be the default and 

what is not

• This has been shown to affect both the 

knowledge and performance of LLMs
– It hasn’t been connected (yet) to social biases
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The MARB Dataset

• Generate templates from naturally-occurring 

sentences

• These sentences contain one of three person 

words

• The templates are populated with attributes 

across three different categories
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• Are we introducing biases during fine-tuning?

– If so, can we detect when/where they come from?

• How do these biases interact with neural 

models?

• How is this reflected in downstream 

applications?

Research Questions
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NLP for Language Learning

A case study of bias and fairness
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• As with many other areas, computers have 

revamped how we learn languages

• There are many ways in which NLP can be 

involved, for example:

– Automated essay scoring

– Grammatical error correction

– Question generation

– Selecting relevant exercises

NLP for Language Learning
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• Some of these applications are high-stakes

• Event those that are not can affect how people 

interact with their environment

• Because of this, we would like to make sure  

that these kinds of systems work as expected*

– Note that the “as expected” part could also be 

problematic!

NLP for Language Learning
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• Given an essay, we want the computer to 

assign a score to it

• This is usually document-level classification

• Ideally we would like to follow the CEFR scale

• We would expect a fair system to evaluate the 

student on what they have learnt

Automated Essay Scoring (AES)
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• The goal is to offer language learners a 

corrected* version of their text

• Despite the name, not all corrections are 

grammatical in nature

– We also care about lexical choices, syntax, and 

ortographic mistakes

• Can be seen as a sequence to sequence task

Grammatical Error Correction (GEC)
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• The term “correction hypothesis” is a better fit

– Teachers must interpret the intent of the students

– There can be multiple corrections and 

interpretations

• Two general philosophies

– Minimal edits: change as little as possible

– Fluency edits: change the text so that it reads more 

naturally

Grammatical Error Correction (GEC)
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• A dataset & an accompanying task in GEC

– Covers 12 languages

– Has tracks for minimal and fluency edits

• We use two kinds of metrics:

– Reference-based metrics need corrected text as a reference

– Reference-free metrics compare the output of the system with 

perplexity from an LLM
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Why Are We Doing This?
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Why Are We Doing This?
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Entering the Core

What I Have Been Working on So Far
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• Path A

– Looking into language models 
to understand what they are 

doing

• Path B

– Name biases in automated 
essay scoring

Two Main Paths So Far
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• Knowing how these models work can lead to 

more fair systems

• Exploring their inner representations can also 

expose hidden biases

• But first we need to look inside the models!

Path A – Understanding the Models
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Perplexity and Linguistic Competence
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Perplexity measures how much a model model 
expects to see  a given output

Our hypothesis was that perplexity is related to 
the complexity of L2 learners’ language

We also analyse the relation between perplexity 
and linguistic features of L2 learner language

“Harnessing GPT to Study Second Language Learner Essays: Can We Use 

Perplexity to Determine Linguistic Competence?” by Muñoz Sánchez et a l. 2024
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Perplexity vs CEFR Levels
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Perplexity and Correction Hypotheses
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• There is an inverse relationship between CEFR 
levels and perplexity

• Course level is not a good proxy for proficiency of 
the essays

• Non-standard use of language by L2 learners 
seems to be correlated with higher perplexity

• High perplexity is not exclusive to L2 language

Some Thoughts
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• Different layers of transformer models encode 

different kinds of linguistic knowledge

• How much of this knowledge should we keep?

• That is, how much domain adaptation is needed 

for automated essay scoring?

Freezing Layers for Partial
Domain Adaptation
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• We chose three languages: English, French, 

and Swedish

• We use language-specific versions of BERT for 

automated CEFR scoring

• We freeze the layers of the model bottom-up

– Lower layers learn basic linguistic features

– Higher layers learn more task-specific features

Methodology
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• Domain adaptation through partial fine-tuning 
seems to be the best strategy

• Maintaining basic knowledge of the language 
within the models is important for AES

• Misclassified essays were usually assigned to one 
of the adjacent levels

• Different layers are important for different 
languages

Takeaways
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• Onomastics is the study of proper names

• Names carry social and cultural context

• We know that proper names affect how people 

are perceived

• This can be an issue when dealing with high-

stakes situations

Path B – Names and Biases
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• Onomastics is the study of proper 
names

• Names carry social and cultural 
context

• Proper names affect how people 
are perceived

• This can have an impact in high-
stakes situations

What are Onomastics?
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• Names have been shown to have an impact in 

human essay grading

• Teachers knowing the name of the student can 

affect the grade given

• However, names written within the test can   

also affect how a student is evaluated

Human Biases in Essay Grading
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• Does changing given names in L2 

learner essays affect how they are 

graded?

• How does this compare between 

feature-based and deep learning 

systems?

• Moreover, how do these compare to 

human assessors?

Name Biases in AES
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• We picked four different 
sociocultural groups

• For each of these we picked the 10 
most common male and female 
names

• We then substituted names within 
Swedish learner essays with these 
names

Name Biases in AES
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• In terms of sociocultural groups

– AES systems do not seem to be affected by 

changes in names

– No statistically significant difference for human 

assessors

• In terms of CEFR levels

– BERT performs better on essays above A1

– Human graders show more differences at higher 

levels

What Have We Found so Far?
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Leaving the Core

47|      SPRÅ KBA NKEN  TEXT



UN IVERSIT Y OF GOT HENB URG

• Algorithms have real-world consequences

• How do we allocate responsibilities for these 

consequences?

• How do we reduce the probability of harm?

Algorithmic Accountability
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• Using NLP to help people

– Deep learning can reinforce existing social issues 

and trends

– But we can also try to reverse them!

• It is different from algorithmic accountability

– Some other things are one but not the other

– There are intersections, though

NLP for Social Good
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• However, there are ethical and legal issues 

when sharing it

• Removing/altering personal identifiable 
information (PII) can reduce privacy risks

• Two main philosophies:
– Anonymization – completely removing PII

– Pseudonymization – substituting PII with 
pseudonyms

Privacy and Pseudonymization
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Mormor Karl – The Team

51|      SPRÅ KBA NKEN  TEXT



UN IVERSIT Y OF GOT HENB URG

• Pseudonyms should make sense  
in context

• We want to avoid issues when 
generating pseudonyms

• The biases & names papers are 
also part of this project

Mormor Karl – Back to Biases
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• The term “fake news” is a buzzword nowadays

• However, disinformation can have a tangible real-

world impact

• Clear and consistent definitions are key for 

understanding the problem

• I focused on detecting disinformation when I first 

stated my PhD

Detecting Disinformation
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• I focused on detecting false news when I first 

stated my PhD

• The idea was to check how things such as 

argumentation changed between truthful and 

false news

• We also checked whether multi-word 

expressions could be helpful

Detecting Disinformation

54|      SPRÅ KBA NKEN  TEXT



UN IVERSIT Y OF GOT HENB URG

• Other projects start drifting farther away

• Two examples

– Key child detection for early detection of autism

– Literature review of NLP for Ancient Egyptian

• Moral of the story: if you propose an interesting 

project to me I’ll probably get sidetracked

What Else?
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Future Directions
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• The idea is to connect both 

streams of research

• Most of my research so far has 

focused on AES but could also 

branch out to GEC

• We are also modernising the tools 

that Språkbanken is offering

What’s Next?
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• Names and biases

– How do models react to rare* 

names?

– Do the models behave differently 

before/after fine-tuning?

• Other possible issues in AES

– Topic biases

– Do systems work the same 

regardless of L1?

More Concrete Ideas
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• Pivoting into GEC

– What about regional variations e.g. 

dialects?

– Do the systems work with gender-

inclusive language?

– Will it “correct” uncommon* names 

or have other cultural biases?

• Possible MultiCEFR shared task?

More Concrete Ideas
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• Will I be able to do it all?

• Probably not

• But having multiple possible paths forward is 

always good
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Causes for High Perplexity
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Placement within an 
essay

• Earlier => higher 
perplexity

Placement within a 
sentence

• Negligible effect

Parts of speech

• Content words => high 
perplexity

• Function words only when 
non-idiomatic

Punctuation

• Apostrophes and 
quotation marks

Errors

• Errors => high perplexity

• Strongly related to essay 
level.

Frequency

• Rare and very common 
words => high perplexity
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What is Disinformation?
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Misinformation

False information that is spread, regardless of intent

Disinformation

False information spread with the intent to deceive or manipulate
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Some Relevant Terms
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Rumours Clickbait Propaganda

Satirical 
News

Fake/False 
News

Biased 
News
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• The image from the “Encoding Biases” slide comes from 2001: 
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• The image from the “Freezing Layers for Partial Domain 
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• The image from the “Leaving the Core” slide is the painting 
“Omniscience” by Jason Chan

• The images in the slides from the Mormor Karl project are 
pictures from said project

• The image in some of the slides for the “Future Directions” slide 
is the painting “The Prismatic Bridge” by Jason Chan
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