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• Biases in AI

• How do we measure them?

• Can they be removed?

• Even if we can, does it do anything at all?

Overview
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PART 1
Waiter, There’s a Bias in My AI

When computers go bad
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Word Embeddings

• Ways to represent words in a computer-
interpretable manner

• They encode both semantics and syntax of 
words

• Have nice geometric properties
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Word Embeddings – Geometry 
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• Man is to king as woman is to… queen

• Walk is to swim as walking is to… swimming

• Spain is to Madrid as Italy is to… Rome

Word Embeddings – Analogies 
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• Man is to king as woman is to… queen

• Walk is to swim as walking is to… swimming

• Spain is to Madrid as Italy is to… Rome

• Man is to programmer as woman is to…

Word Embeddings – Analogies 
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• Man is to king as woman is to… queen

• Walk is to swim as walking is to… swimming

• Spain is to Madrid as Italy is to… Rome

• Man is to programmer as woman is to… homemaker

Word Embeddings – Analogies 
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Wait, what?
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• As with all AI models, embeddings find and exploit patterns 
in the data

• However, stereotypes are patterns in the data

• Our systems can and will pick these patterns and perpetuate 
unwanted biases, such as sexism and racism

Encoding Biases
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Encoding Biases

• As with all AI models, embeddings find and 
exploit patterns in the data

• However, humans are biased and this is 
reflected in the data we produce

• Our models can and will pick these patterns 
and perpetuate unwanted biases
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Correference Resolution

• The doctor hired a nurse because he was 
busy (Correct)

11|      SPRÅKBANKEN TEXT



UNIVERSITY OF GOTHENBURG

Correference Resolution

• The doctor hired a nurse because he was 
busy (Correct)

• The doctor hired a nurse because she was 
busy (Wrong)
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Correference Resolution

• The doctor hired a nurse because he was 
busy (Correct)

• The doctor hired a nurse because she was 
busy (Wrong)

• The doctor hired a nurse because she was 
busy (Correct)
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PART 2
Measuring Bias

Fixing the World by Fixing our Models
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Bias Metrics
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• Measure unwanted associations in language models and embeddings
• Examples are WEAT, CEAT, and DisCo
• Also called bias metrics

Intrinsic

• Measure the disparity of performance in downstream applications
• Examples are demographic parity, equality of opportunity, and predictive 

rate parity
• Also called fairness metrics

Extrinsic
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Intrinsic Metrics - WEAT
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Based on the Implicit Association Test (IAT)

We are given a set of target words and two lists of 
characteristics (stereotypical and anti-stereotypical)

Are the targets’ representations closer to their 
stereotypes’?
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Intrinsic Metrics - WEAT
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From “Are We Consistently Biased? Multidimensional Analysis of Biases 
in Distributional Word Vectors” by Lauscher and Glavaš (2019) [Link]

https://www.aclweb.org/anthology/S19-1010
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Extrinsic Metrics – Group Fairness

• Unawareness

• Demographic Parity

• Equalized Odds

• Equality of Opportunity
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• Is only defined for binary 
classification

• Both classes have the same 
opportunity of being classified 
correctly

• It is measured as the difference 
between both classes’ recalls

Extrinsic Metrics – Equality of 
Opportunity
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PART 3
Removing Biases

Fixing Our Models to Fix the World
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In general there are two philosophies

• Debiasing is reducing intrinsic bias metrics
– Note that “debiasing” is a very loaded term!

• Fairness is reducing extrinsic bias metrics
– We will not be focusing on these for this talk

Removing Biases
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• Our assumption: removing biases in language 
models removes biases in downstream 
applications

• Can either be attempted mathematically or by 
altering the data

Debiasing
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Debiasing – Dataset Balancing
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The solution Add data where the word “gay” is used to represent a sexual orientation/preference

The issue All sentences in the dataset with the word “gay” use it as an insult

The problem All comments that contain the word “gay” are classified as abusive

The task Abusive comment detection on the Wikipedia comment section
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• Identify the main dimension in which gender is represented 
in non-contextual embeddings

• Remove this dimension:
– Completely removing it
– Reducing the representation of non-gendered words

Debiasing – Removing the “Gender” Axis
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Debiasing – Removing the “Gender” Axis
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From “Learning Gender-Neutral Word Embeddings” by Zhao et al. (2018) [Link]

https://aclanthology.org/D18-1521
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Does it Actually Work?
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Does it Actually Work?
Not Always
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Biases Might Stay Hidden
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From “Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in 
Word Embeddings But do not Remove Them” by Gonen and Goldberg (2019) [Link]

https://aclanthology.org/N19-1061
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Biases are Complex
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From “Balanced Datasets Are Not Enough: Estimating and Mitigating Gender 
Bias in Deep Image Representations” by Wang et al. (2019) [Link]

https://ieeexplore.ieee.org/document/9008527/;jsessionid=ZzSDN4j33Ft86kTASpKLRIzZoIychQLPx7Yuh05kKRHm74EFISwC!-1074831866
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What About Other Languages?
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From “Analyzing and Mitigating Gender Bias in Languages with Grammatical 
Gender and Bilingual Word Embeddings” by Zhou et al. (2019) [Link]

https://aiforsocialgood.github.io/icml2019/accepted/track1/pdfs/47_aisg_icml2019.pdf
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PART 4
But Does it Work?

Removing Biases in Downstream Applications
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• Ways to Measure Bias
– WEAT
– Equality of Opportunity

• Two methods to reduce bias
– Dataset balancing
– Attract-Repel

• Two and a half downstream applications
– Correference resolution in English
– Hatespeech detection in English and in Spanish

General Experimental Design
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Attract-Repel
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English
• Has been used in most bias studies
• Only has semantic gender

Spanish
• Some studies have analysed biases in Spanish embedding spaces
• There is enough data available for most tasks
• Has both grammatical and semantic gender

About the Languages
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• Correference resolution for gendered pronouns
– A stereotypical task for bias assessment in 

English
– However, it’s trivial in Spanish

• Hate speech classification
– Allows us to compare the effects of semantic vs 

grammatical bias
– Against women (English and Spanish)
– Against migrants (Spanish)

Downstream Applications

35|      SPRÅKBANKEN TEXT



UNIVERSITY OF GOTHENBURG

The Results – Correference (eng) 

36|      SPRÅKBANKEN TEXT

From “Intrinsic Bias Metrics Do Not Correlate with 
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]

https://aclanthology.org/2021.acl-long.150
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The Results – Hate Speech Detection (eng) 
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From “Intrinsic Bias Metrics Do Not Correlate with 
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]

https://aclanthology.org/2021.acl-long.150
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The Results – Hate Speech Detection (spa) 
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From “Intrinsic Bias Metrics Do Not Correlate with 
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]

https://aclanthology.org/2021.acl-long.150
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The Results
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From “Intrinsic Bias Metrics Do Not Correlate with 
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]

https://aclanthology.org/2021.acl-long.150
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Our Insights

• Reducing bias in embedding spaces is unpredictable in 
terms of downstream application biases
– It has been reproduced with more downstream 

applications
– Language models also have these issues

• Spanish (X)WEAT is biased itself!
– Almost all science words were grammatically male
– Some issues with translations
– No usual names from Spanish-speaking countries
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Going Forward

• Most bias and fairness research focuses on
– Gender as a binary (male/female)
– Race in the United States as a binary 

(white/black)

• Biases are very diverse but the experiments ran 
more often than not aren’t

• Getting this research into the hands of those who 
need it is important
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