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Intrinsic Bias Metrics Do Not
Correlate with Application Bias
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Overview

Biases in Al

How do we measure them?

Can they be removed?

Even if we can, does it do anything at all?
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Word Embeddings

« Ways to represent words in a computer-
interpretable manner

« They encode both semantics and syntax of
words

« Have nice geometric properties
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Word Embeddings — Geometry
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Word Embeddings — Analogies

* Man is to king as woman is to... queen
» Walk is to swim as walking is to... swimming

« Spain is to Madrid as ltaly is to... Rome
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Word Embeddings — Analogies

 Man is to programmer as woman is to...
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Word Embeddings — Analogies

* Man is to programmer as woman is to... homemaker
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Wait, what?
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Encoding Biases

« As with all Al models, embeddings find and exploit patterns
in the data

* However, stereotypes are patterns in the data

« Our systems can and will pick these patterns and perpetuate
unwanted biases, such as sexism and racism
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Encoding Biases

» As with all Al models, embeddings find and
exploit patterns in the data

 However, humans are biased and this is
reflected in the data we produce

» Our models can and will pick these patterns
and perpetuate unwanted biases
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Correference Resolution

 The doctor hired a nurse because he was
busy (Correct)
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Correference Resolution

 The doctor hired a nurse because he was
busy (Correct)

 The doctor hired a nurse because she was
busy (Wrong)
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Correference Resolution

 The doctor hired a nurse because he was
busy (Correct)

 The doctor hired a nurse because she was
busy (Wrong)

 The doctor hired a nurse because she was
busy (Correct)
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Bias Metrics

med  [Ntrinsic

* Measure unwanted associations in language models and embeddings
e Examples are WEAT, CEAT, and DisCo
e Also called bias metrics

* Measure the disparity of performance in downstream applications

e Examples are demographic parity, equality of opportunity, and predictive
rate parity

e Also called fairness metrics
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Intrinsic Metrics - WEAT

N Based on the Implicit Association Test (IAT)

% We are given a set of target words and two lists of
characteristics (stereotypical and anti-stereotypical)

G)\ Are the targets’ representations closer to their
stereotypes’?
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Intrinsic Metrics - WEAT

Test | Target Set #1 Target Set #2 Attribute Set #1 Attribute Set #2

T1 | Flowers (e.g., aster, tulip) Insects (e.g., ant, flea) Pleasant (e.g., health, love) Unpleasant (e.g., abuse)

T2 | Instruments (e.g., cello, guitar) Weapons (e.g., gun, sword) Pleasant Unpleasant

T3 | Euro-American names (e.g., Adam) Afro-American names (e.g., Jamel) Pleasant (e.g., caress) Unpleasant (e.g., abuse)

T4 | Euro-American names (e.g., Brad) Afro-American names (e.g., Hakim) Pleasant Unpleasant

TS5 | Euro-American names Afro-American names Pleasant (e.g., joy) Unpleasant (e.g., agony)

T6 | Male names (e.g., John) Female names (e.g., Lisa) Career (e.g. management) Family (e.g., children)

T7 | Math (e.g., algebra, geometry) Arts (e.g., poetry, dance) Male (e.g., brother, son) Female (e.g., woman, sister)
T8 | Science (e.g., experiment) Arts Male Female

T9 | Physical condition (e.g., virus) Mental condition (e.g., sad) Long-term (e.g., always)  Short-term (e.g., occasional)
T10 | Older names (e.g., Gertrude) Younger names (e.g., Michelle) Pleasant Unpleasant

Table 1: WEAT bias tests.

From “Are We Consistently Biased? Multidimensional Analysis of Biases
in Distributional Word Vectors” by Lauscher and Glava$ (2019) [Link
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https://www.aclweb.org/anthology/S19-1010

Extrinsic Metrics — Group Fairness
 Unawareness
* Demographic Parity

» Equalized Odds

» Equality of Opportunity
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' Extrinsic Metrics — Equality of
Opportunity

* |s only defined for binary
classification

* Both classes have the same

» , » *, opportunity of being classified
o J il correctly

* |t is measured as the difference
between both classes’ recalls
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Removing Biases
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In general there are two philosophies
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Debiasing

« Our assumption: removing biases in language
models removes biases in downstream
applications

» Can either be attempted mathematically or by
altering the data
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Debiasing — Dataset Balancing

Abusive comment detection on the Wikipedia comment section

All comments that contain the word “gay” are classified as abusive

All sentences in the dataset with the word “gay” use it as an insult

Add data where the word “gay” is used to represent a sexual orientation/preference
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Debiasing — Removing the “Gender” Axis

* |dentify the main dimension in which gender is represented
in non-contextual embeddings

« Remove this dimension:
— Completely removing it
— Reducing the representation of non-gendered words
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Debiasing — Removing the “Gender” Axis
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Figure 1: Cosine similarity between the gender direction and the embeddings of gender-neutral words. In
each figure, negative values represent a bias towards female, otherwise male.

From “Learning Gender-Neutral Word Embeddings” by Zhao et al. (2018) [Link]
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Does it Actually Work?




Does it Actually Work?
Not Always




Biases Might Stay Hidden

401{0riginal

40 -20 o 20 40 60 -60 -40 =20 0 20 40 60

(a) Clustering for HARD-DEBIASED embedding, before (left
hand-side) and after (rlght hand-side) debiasing.

60

Original 40{Debiased

40

—40

(b) Clustering for GN-GLOVE embedding, before (left hand-
side) and after (right hand-side) debiasing.

From “Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in
Word Embeddings But do not Remove Them” by Gonen and Goldberg (2019) [Link]
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Biases are Complex

MODEL LEAKAGE @ F1

Predict Labels knife Predict Gender from
from Image Predicted Labels
| spoon
| fork A
’ (X ) > vase ' (Y )
' hair drier
oven

From “Balanced Datasets Are Not Enough: Estimating and Mitigating Gender
Bias in Deep Image Representations” by Wang et al. (2019) [Link]
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What About Other Languages?

Grammatical gender
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From “Analyzing and Mitigating Gender Bias in Languages with Grammatical
Gender and Bilingual Word Embeddings” by Zhou et al. (2019) [Link]
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General Experimental Design

* Ways to Measure Bias
— WEAT

— Equality of Opportunity

« Two methods to reduce bias
— Dataset balancing

— Attract-Repel

« Two and a half downstream applications
— Correference resolution in English

— Hatespeech detection in English and in Spanish
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About the Languages

English

e Has been used in most bias studies
e Only has semantic gender

e Some studies have analysed biases in Spanish embedding spaces
e There is enough data available for most tasks
e Has both grammatical and semantic gender
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Downstream Applications

» Correference resolution for gendered pronouns

— A stereotypical task for bias assessment in
English

— However, it’s trivial in Spanish

» Hate speech classification

— Allows us to compare the effects of semantic vs
grammatical bias

— Against women (English and Spanish)
— Against migrants (Spanish)

SPRAKBANKEN TEXT
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The Results — Correference (eng)

Metric = Precision Metric = Recall
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(a) Coreference (en) results broken out by bias modification method (pre- vs. post-processing).

From “Intrinsic Bias Metrics Do Not Correlate with
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]
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The Results — Hate Speech Detection (eng)

Metric = Precision Metric = Recall
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(b) Hatespeech (en) results broken out by bias modification method (pre- vs. post-processing).

From “Intrinsic Bias Metrics Do Not Correlate with
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]
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The Results — Hate Speech Detection (spa)

Metric = Precision

Metric = Recall
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(c) Hatespeech (es) results for gender bias metrics broken out by bias modification method.
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From “Intrinsic Bias Metrics Do Not Correlate with
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]
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The Results
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From “Intrinsic Bias Metrics Do Not Correlate with
Application Bias” by Goldfarb-Tarrant et al. (2021) [Link]
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The (real) scientific method.
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Our Insights

» Reducing bias in embedding spaces is unpredictable in
terms of downstream application biases

— It has been reproduced with more downstream
applications

— Language models also have these issues

« Spanish (X)WEAT is biased itself!
— Almost all science words were grammatically male

— Some issues with translations
— No usual names from Spanish-speaking countries
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Going Forward

 Most bias and fairness research focuses on
— Gender as a binary (male/female)

— Race in the United States as a binary
(white/black)

» Biases are very diverse but the experiments ran
more often than not aren’t

» Getting this research into the hands of those who
need it is important

SPRAKBANKEN TEXT
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